Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces.

نویسندگان

  • Yuan Liu
  • Peng Tan
  • Lei Xu
چکیده

When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin-Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splashing Phenomena during Liquid Droplet Impact

Splashing is a phenomenon often observed during liquid droplet impact onto a solid surface. The threshold of splashing is known to be related to droplet size, impact velocity, and physical properties of the liquid, but the mechanisms that initiate splashing are not understood completely. In accordance with the Kelvin-Helmholtz (K-H) instability analysis, recent studies have shown that ambient g...

متن کامل

نا پایداری کلوین - هلمهولتز در اسپیکول‌های خورشیدی

Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different de...

متن کامل

Drops can bounce from perfectly hydrophilic surfaces

Drops are well known to rebound from superhydrophobic surfaces and from liquid surfaces. Here, we show that drops can also rebound from a superhydrophilic solid surface such as an atomically smooth mica sheet. However, the coefficient of restitution CR associated with this process is significantly lower than that associated with rebound from superhydrophobic surfaces. A direct imaging method al...

متن کامل

Failure mechanisms of air entrainment in drop impact on lubricated surfaces.

Lubricated surfaces have recently been introduced and studied due to their potential benefit in various configurations and applications. Combining the techniques of total internal reflection microscopy and reflection interference microscopy, we examine the dynamics of an underlying air film upon drop impact on a lubricated substrate where the thin liquid film is immiscible to the drop. In contr...

متن کامل

Droplet Lamella Lift Dynamics and Surface Wettability

Droplet impact on dry, smooth surfaces remains an issue for a variety of important applications such as fuel injection, spray cooling, metallurgy, pesticides and coatings. The mechanisms that initiate splashing are highly complex and differ from those on rough or pre-wetted surfaces. In this work, droplet wettability on a smooth, dry surface is examined to quantitatively evaluate its influence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 11  شماره 

صفحات  -

تاریخ انتشار 2015